A Comparative Approach to Understanding General Intelligence: Predicting Cognitive Performance in an Open-ended Dynamic Task
نویسندگان
چکیده
The evaluation of an AGI system can take many forms. There is a long tradition in Artificial Intelligence (AI) of competitions focused on key challenges. A similar, but less celebrated trend has emerged in computational cognitive modeling, that of model comparison. As with AI competitions, model comparisons invite the development of different computational cognitive models on a well-defined task. However, unlike AI where the goal is to provide the maximum level of functionality up to and exceeding human capabilities, the goal of model comparisons is to simulate human performance. Usually, goodness-of-fit measures are calculated for the various models. Also unlike AI competitions where the best performer is declared the winner, model comparisons center on understanding in some detail how the different modeling “architectures” have been applied to the common task. In this paper we announce a new model comparison effort that will illuminate the general features of cognitive architectures as they are applied to control problems in dynamic environments. We begin by briefly describing the task to be modeled, our motivation for selecting that task and what we expect the comparison to reveal. Next, we describe the programmatic details of the comparison, including a quick survey of the requirements for accessing, downloading and connecting different models to the simulated task environment. We conclude with remarks on the general value in this and other model comparisons for advancing the science of AGI development.
منابع مشابه
Editorial: Cognitive Architectures, Model Comparison and AGI
Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human per...
متن کاملOpen Ended Intelligence: The individuation of Intelligent Agents
Artificial General Intelligence (AGI) is a field of research aiming to distill the principles of intelligence that operate independently of a specific problem domain or a predefined context and utilize these principles in order to synthesize systems capable of performing any intellectual task a human being is capable of and eventually go beyond that. While “narrow” artificial intelligence that ...
متن کاملCognitive Architectures, Model Comparison and AGI
Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human per...
متن کاملExploration for Understanding in Cognitive Modeling
The cognitive modeling and artificial general intelligence research communities may reap greater scientific return on research investments – may achieve an improved understanding of architectures and models – if there is more emphasis on systematic sensitivity and necessity analyses during model development, evaluation, and comparison. We demonstrate this methodological prescription with two of...
متن کاملKeep it simple - A case study of model development in the context of the Dynamic Stocks and Flows (DSF) task
This paper describes the creation of a cognitive model submitted to the ‘Dynamic Stocks and Flows’ (DSF) modeling challenge. This challenge aims at comparing computational cognitive models for human behavior during an open ended control task. Participants in the modeling competition were provided with a simulation environment and training data for benchmarking their models while the actual spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009